Combien de verres de vin doit on consommer au minimum pour détecter la presence de la villageoise parmis les 8 bouteilles incluant celles de la cave du palais de l’Elysée ?

Astuce : Grouper les vins entre eux

Réponse : Pour détecter $K=1$ bouteille parmis $N=8$: $N=8 \rightarrow \log_2(8)=3$
OUTLINE

1 Preliminary

2 Fundamentals of Compressive Sensing (CS) acquisition

3 Potential CS applications for RF signal processing

4 Review of existing CS architectures for RF

5 Novel adaptive CS acquisition scheme : NUWBS

6 Summary & Perspectives
MOTIVATIONS OF COMPRESSIVE SENSING (I)

- Explosion of digital data volume
MOTIVATIONS OF COMPRESSION SENSING (II)

- Data management issues:
 - Data storage issues:
 Segate Report “It’s far easier to generate zettabytes of data than to manufacture zettabytes of data capacity. A yawning gap is emerging between data production and hard drive and flash production”
 => Trends is Use data instantaneously or loose it

- Data communication transmission rate is growing lower than the data volume explosion

- Power consumption of wireless data transmission becomes the bottleneck in many wireless portable medical device
• It is useless to try to analyze all the data because **At 1.5% of the total, target-rich data is a much more manageable area of discovery** *(Sources IDC, 2014)*

Why go to so much effort to acquire all the data when most of what we get will be thrown away?
PRINCIPLE OF COMPRESS SENSING

- **What to do?** Acquire a *compress representation* with little information loss through *dimensionality reduction*

 \Rightarrow *shrink storage constraint + huge amount data processing requirement*

 \Rightarrow *No more physical representation of the signal*

- **How to do it?**

 - Compressive sensing *only* captures a certain amount of information

 - Be careful: information \neq from data

 - Measure *directly* in a compressed form

- **How is it possible?**

 - A priori signal modelling: *Sparsity*

 (real world signals are sparse or very compressible in a suitable basis)
PRINCIPLE OF COMPRESS SENSING

- **Standard acquisition:**

- **Compressive acquisition:**

 - Sense & Compress at the same time

 (Rice university, 2006)
WHAT IS A SPARSE SIGNAL (II) ?

- **Ex 2:** Sparsity in frequency domain:

- RF Signal waveform:

- Sparsity basis: Fourier matrix

- Key relationship: \(x = F^{-1}s \)
PRINCIPLE OF COMPRESSIVE SENSING ACQUISITION

- **Principle:**
 - Acquiring minimal number of measurements M such that $M \ll N$ while keeping all the information of the incoming signal in dimension N.
 - When signal is sparse, we can acquire a condensed representation of it with no information loss through linear dimension reduction.

- **Remarks:**
 - Sparse Signal s is projected thanks to a sensing matrix Φ.
 - NB: Since Φ is not full rank \Rightarrow signal recovery \hat{s} from measurement y is not possible, without any a-priori/model on signal structure ... \Rightarrow Sparsity comes into play.
FROM BANDPASS SAMPLING TO COMPRESS SENSING

<table>
<thead>
<tr>
<th>Nyquist sampling</th>
<th>Band-Pass Sampling</th>
<th>Compress sampling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nyquist sampling
- **Formula**:
 \[f_s > f_{NYQ} = 2BW \]

Band-Pass Sampling
- **Formula**:
 \[\frac{2f_h}{k} \leq f_s \leq \frac{2f_l}{k-1} \]

Compress sampling
- **Formula**:
 \[f_{\text{LANDAU}} = \sum_i BW_i < f_{\text{NYQ}} \]
INFORMATION RECOVERY

- Compact formulation of acquisition scheme:
 \[y = \Phi x = \Phi \Psi s \]

 \[\Rightarrow \text{Main Challenge is: recover signal } x \text{ from measurements } y \]

 \[\Phi \text{ is not square/full rank} \]
 \[\Rightarrow \text{ill-posed problem} \]
 \[x = \Psi s, \|s\|_0 = K \]
 \[\text{unless sparsity conditions:} \]

- Compact Formulation of reconstruction problem:
 \[\hat{s} = \operatorname{argmin} \|z\|_0 \text{ subject to } z \in \mathcal{B}(y) \text{ where } \mathcal{B}(y) = \{z: \|\Phi \Psi z - y\|_2^2 \leq \varepsilon\} \]

 Convex approximation using l1 norm
 additive noise consideration

 Many application involve signal inference and not reconstruction

 Detection < classification < estimation < reconstruction
CHALLENGES IN COMPRESS SENSING

1. Face up to robustness issues
 - Limitation of the degradation of the Signal To Noise ratio during acquisition

2. Deal with measurement quantization

3. Develop more realistic signal models

4. Develop practical sensing matrices beyond random
 - 4.1-Reduction of number of sensing measurements
 - 4.2-Optimization number of sensing nodes (hardware serialization)
 - 4.3-Optimization of the use of the sensing power

5. Develop more efficient recovery algorithms

6. Develop rigorous performance guarantees for practical CS systems

7. Exploit signals directly in the compressive domain
 - Reduction of the complexity of the signal reconstruction or classification algorithm to be computational extractable
OUTLINE

1 Preliminary
2 Fundamentals of Compressive Sensing (CS) acquisition
3 Potential CS applications for RF signal processing
4 Review of existing CS architectures for RF
5 Novel adaptive CS acquisition scheme: NUWBS
6 Summary & Perspectives
SPECTRUM SENSING AND COGNITIVE RADIO

- **Definition (FCC):** Cognitive radio is a radio or system that senses its operational electromagnetic environment and can dynamically and autonomously adjust its radio operating parameters to modify system operation, such as maximize throughput, mitigate interference, facilitate interoperability, access secondary markets.”

![Diagram of ADC and RF system](image)

<table>
<thead>
<tr>
<th>Type</th>
<th>Nyquist wideband sensing</th>
<th>Sub-Nyquist wideband sensing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithm sub-type</td>
<td>Standard ADC [5, 6]</td>
<td>Compressive sensing [9-11]</td>
</tr>
<tr>
<td>Advantage</td>
<td>Simple structure</td>
<td>Low sampling rate, signal acquisition cost</td>
</tr>
<tr>
<td>Disadvantage</td>
<td>High sampling rate, energy cost</td>
<td>Sensitive to design imperfections</td>
</tr>
<tr>
<td>Challenges</td>
<td>Reduce sampling rate, save energy</td>
<td>Improve robustness to design imperfections</td>
</tr>
</tbody>
</table>

![Diagram of ADC and RF system](image)

- **Objectives:**
 - Downscaling the sampling rate thanks to CS approach may democratize the spectral sensing capability of RF receiver (primary/secondary user management)
 - Provide new toolbox for RF Link Quality Estimation (cross layer optimization in IoT)
 - Interference mitigation for high end radio

(Hongjian et al. 2013)
For a given sampling rate, ADC cannot exceed a certain signal-to-noise-and-distortion-ratio (SDNR)

- **Objectives:**
 - Boosting the ADC effective bandwidth by leveraging sparsity assumption of incoming signal.
 - OR for a given bandwidth leveraging the additional dynamic range of sub-Nyquist sampling ADCs to enhance its resolution.

- **Tricks:**
 - Sampling near signal’s (low) “information rate” rather than its (high) Nyquist rate

(Murmann 2015)
Objectives:
- Extraction of signal features rather than entire signal recovery
- Signal classification rather than signal reconstruction by means of analog analytics

Principles:
- Reduce the dimensionality of the signal
- Focus on signal freedom degree or relevant feature (link to machine learning)

ANALOG TO INFORMATION & FEATURE CONVERTER

<table>
<thead>
<tr>
<th>A Priori Information</th>
<th>Signal = Bandlimited</th>
<th>Signal = Sparse in Certain Basis</th>
<th>Signal = Has Finite Degrees of Freedom per Time Unit</th>
<th>Signal = Contains Relevant (Feature) Information in Sea of Other Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information Rate (IR) Versus Physical Bandwidth (PB)</td>
<td>IR (\leq PB)</td>
<td>IR (< PB)</td>
<td>IR (< PB)</td>
<td>IR (< PB) Though Not All Information Relevant</td>
</tr>
</tbody>
</table>

(Verhelst et al. 2015)
OUTLINE

1 Preliminary

2 Fundamentals of Compressive Sensing (CS) acquisition

3 Potential CS applications for RF signal processing

4 Review of existing CS architectures for RF

5 Novel adaptive CS acquisition scheme : NUWBS

6 Summary & Perspectives
PRINCIPLE:

- Pick up a *subset of time samples* among all possible that may be available from a full Nyquist sampling rate.

SUB CATEGORY:

- **randomized non-uniform sampling (RNUS):**
 - deploys a sampling sequence that is composed of randomly chosen periods from a set of time intervals

- **periodic non-uniform sampling (PNUS):**
 - sequence of non-uniform sampling periods that are repeated

- **level-triggered non-uniform sampling (LTNUS):**
 - Level-triggered non-uniform sampling samples
RANDOM NUS (I) : PRINCIPLE

$$y[n] = \text{PRBS} \times T_{\text{sys}} \xrightarrow{\text{ADC}} y[t] \xrightarrow{\text{NUS}} x[t]$$

$$y = R_T I_D F^{-1} s$$

- Downsizing Selector (Random rows)
- Projection basis (Canonical)
- Sparcifying matrix (Fourier)

Adaptive Compressive Sensing for Radio-Frequency Receivers | GDR SoC SiP PELISSIER Michaël | June 2017 | 20
RANDOM NUS (II) – IMPLEMENTATION EXAMPLE

4-bit NUS Flash with 16 comparators

non-uniform clock generator with configurable under-sampling factor

(Bellasi et al. 2013)
VRS : VARIABLE RATE SAMPLING

PRINCIPLE :

- Multiple branches with variable rate
- Each branch performs Band-pass sampling

SUB CATEGORY :

- Synchronous Multi-rate sampling
 - Fixed rate for each branch, all in phase

- Asynchronous Multi-rate sampling
 - Fixed rate for each branch, non coherent

- Nyquist Folding Receiver :
 - Continuous time variable sampling rate
RM : RANDOM MODULATION

PRINCIPLE :

• Encode the input signal by mixing with random code sequence (like spread spectrum)

SUB CATEGORY :

• The random DeModulator (RD)

• The random Modulation Pre-Integrator (RMPI)
 • = RD with multiple branches

• Modulated Wide Band convertor (MWC)
 • Code sequence is periodic
MODULATED WIDE BAND CONVERTOR: MWC

\[p_i(t) = \sum_{l=-\infty}^{\infty} c_{il} e^{j(2\pi l f_p) t} \]

\[Y_i(e^{-j2\pi f n T_s}) = \sum_{l=-L_0}^{l=+L_0} c_{il} X(f - l f_p) \]

(Mishali et al. 2011)
MWC – IMPLEMENTATION EXAMPLE : QAIC

m-sequence generators based on an LFSR implementation

8 unique gold sequences generation

(Yazicigil et al. 2015)
WHAT ARE THE LIMITATIONS OF CURRENT SOLUTION?

<table>
<thead>
<tr>
<th>Hardware implementation bottleneck</th>
<th>Architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Nyquist-rate is still present:</td>
<td>NUS & MRS</td>
</tr>
<tr>
<td>- Track & hold \rightarrow high bandwidth \times</td>
<td>RMPI, RD</td>
</tr>
<tr>
<td>- Random generator \rightarrow high power consumption \times</td>
<td></td>
</tr>
<tr>
<td>Number of branches required \times</td>
<td>MRS, MWC</td>
</tr>
<tr>
<td>Lack of re-configurability and versatility \times</td>
<td>MWC, MRS</td>
</tr>
<tr>
<td>Sensitivity to timing jitter \times</td>
<td>NUS, MRS</td>
</tr>
</tbody>
</table>

- **The lack of structure** within the acquisition scheme
 - \rightarrow *excessive storage memory requirements*: random sequences on both ends of acquisition and reconstruction (NUS, RMPI)
 - \rightarrow Complex recovery requirement algorithm that are **power hungry**

- **Random projection** suffers from fundamental limits:
 - On input SNR due to *aliasing effect*
 \Rightarrow *Might be an issue in RF if sensitivity is required*
 - **Lack of adaptivity** to the signal class or specific signal features
 \Rightarrow *there is no specific method to extract specific features*
OUTLINE

1 Preliminary
2 Fundamentals of Compressive Sensing (CS) acquisition
3 Potential CS applications for RF signal processing
4 Review of existing CS architectures for RF
5 Novel adaptive CS acquisition scheme : NUWBS
6 Summary & Perspectives
NOVEL METHOD: NON UNIFORM WAVELET BANDPASS SAMPLING (NUWBS)

- Non Uniform Sampling:

\[y = R_T I_D F^{-1} s \]

- NUWBS: Non Uniform Band Wavelet Pass sampling

\[y = R_T W^T F^{-1} s \]

"Non-Uniform Wavelet Sampling for RF Analog-to-Information Conversion", M Pelissier & C Studer, IEEE Transactions on Circuits and Systems I: Regular Papers, accepted for publication 12/2016
WHY SHOULD WE USE WAVELET FRAMES?

- Ability to tune the **time-frequency window** in a manner to track **dynamic variation** of the signal statistical parameters.

- The **reconfigurable structure** of the transform introduce **adaptability and versatility** into the system. Depending on the needs or the **features** to be extracted we can adapt the wavelet accordingly (detection abrupt discontinuities, central frequency, etc.)

- Ability to arrange the time-frequency tiling in a manner that **minimizes the disturbances**. By flexible design of the time-frequency windows, the effect of noise and interference on the signal can be minimized.

- Wavelets are a priori well suited to the **adaptive scheme** since it has an inherent tree structure, coming from recursive decomposition (DWT, WPT, QMF, ...) cf. JPEG200.

- **Hardware complexity is manageable** for both from acquisition chain (for instance pulse generation) but also algorithm (Morlet WT processing time of $O(N)$ is the minimal theoretically possible of all signal-processing methods).

Nikookar 2013
NUWBS : PRINCIPLE

- **NUS : Non Uniform Sampling**

- **NUWBS : Non Uniform Wavelet Band Pass sampling**

 - Nyquist rate accuracy requirement ✗
 - High bandwidth requirement ✗
 - Sampling with 1 freedom degree ✗

 - Sub-Nyquist accuracy requirement ✔
 - Low (BB) bandwidth requirement ✔
 - Sampling with 3 degrees of freedom → versatile
NUWBS : BENEFITS

Features

- Wavelet ‘smear out’ the samples: instead of measuring $x(t)$, we modulate the signal around time δ with a pulse wave $p(t)$ translated at frequency f_c and integrate.
- The pulse duration and central frequency is adjusted according needs.
- The results of the integration is down sampled in time.

Benefits

- Bandwidth reduction of sampling hardware (track/hold, ADC).
- Possibility to match the acquisition to the signal of interest (disturbance resilience).
- Reduce number of measurements.

Signal Matching:
- Prior on signal required
- ‘windowing effect’
- Disturbance mitigation

Compressive:
- No prior
- ‘compression effect’
- Noise aliasing
1 Preliminary

2 Fundamentals of Compressive Sensing (CS) acquisition

3 Potential CS applications for RF signal processing

4 Review of existing CS architectures for RF

5 Novel adaptive CS acquisition scheme: NUWBS

6 Summary & Perspectives
SUMMARY

• Summary of CS Main features:
 • Compressive sensing is an enabler technology to cope with big data processing assuming sparse representation of the information
 • RF signal processing can leverage CS approach in various domain: sensing, beamforming, block/chain performance booster

• Summary of CS acquisition for RF signal processing:
 • Sub-Nyquist sampling rate for RF sparse signal processing has been demonstrated with both off the shelf and ASICs proof of concept.
 • Most of periodic solution relies on “encoded bandpass sampling” solution that creates diversity of the alias so as to recover information

• The Non Uniform Wavelet Band Pass sampling (NUWBS) features:
 • Dedicated solution to deal with frequency sparse RF multiband signal
 • Solution matched to the band of interest => optimal noise/interference resilience
 • Solution offers sampling scheme with 3 freedom degrees => flexibility
TRENDS AND HOT TOPICS

• improve the RSNR and overcome structural limitation of CS with respect SNR performances by considering additional structure into the signal.

• Provide dynamic acquisition process to handle sparsity fluctuation in time

• Activate the subset of features most beneficial under specific operating conditions in analog feature converter => Toward adaptive scheme

• Overcome hardware limitation due to fixed amount of parallelization and branches.

• Target real-time decision and relax signal inference constraints from signal reconstruction to signal classification by processing data directly in compressive domain.
Thanks

Sponsor: Enhanced Eurotalents & Carnot Institute