
SCRATCHS: Side-Channel Resistant Applications
Through Co-designed Hardware/Software

Vianney Lapôtre
Journée thématique du club des partenaires sur le RISC-V - GDR SOC2

September 29, 2023

mailto:vianney.lapotre@univ-ubs.fr

SCRATCHS project

Hardware Toolchain

RISC-V
Core

SCRATCHS add-in

Memory
hierarchy

SCRATCHS add-in

UART

Timers

SPI GPIOs

SCRATCHS add-in

naive

.c

µ
.S

mem

map

3

33

0101101

trusted
binary
code

new ISA

contract

Side-Channel Resistant Applications Through Co-designed Hardware/Software

• Aimed attacks : Timing side channel on the microarchitecture
• Ensure efficient and on-demand constant-time execution

— Best convenience between hardware and toolchain contributions
1/20 SCRATCHS: Side-Channel Resistant Applications Through Co-designed Hardware/Software |

Threat model

CV32E40P

L1-DL1-I

L2

main memory

victim
attacker
context switch

runsecret1

runsecret2
victim

start

secret1

secret2

1○ Timing attacks at
Context Switch

2○ Cache attacks

IF ID EX WB

fetch

c d

decode

RF div

LSU

E

E E

An OS schedules and processes.
Only timing side channels are considered.
The attacker :
• knows the victim program.
• measures time with cycle accuracy.

— victim execution— its memory accesses {hit;miss}
• can interrupt.
• shares cache memories with victim.

2/20 SCRATCHS: Side-Channel Resistant Applications Through Co-designed Hardware/Software |

Threat model

CV32E40P

L1-DL1-I

L2

main memory

victim
attacker
context switch

runsecret1

runsecret2
victim

start

secret1

secret2

1○ Timing attacks at
Context Switch

2○ Cache attacks

IF ID EX WB

fetch

c d

decode

RF div

LSU

E

E E

Ensure efficient and on-demandconstant-time execution
Sources of leakages

Branchingif (condition(secret))
Operation with variable execution timedividend/secret;
Index for Memory accessarray[secret];

3/20 SCRATCHS: Side-Channel Resistant Applications Through Co-designed Hardware/Software |

Project contributions

CV32E40P

L1-DL1-I

L2

main memory

victim
attacker
context switch

runsecret1

runsecret2
victim

start

secret1

secret2

1○ Timing attacks at
Context Switch

2○ Cache attacks

IF ID EX WB

fetch

c d

decode

RF div

LSU

E

E E

Ensure efficient and on-demandconstant-time execution
• Hardware support for

— software controlled mode forconstant time execution— software controlled cache linesLocked and Unlocked
• Software tools for

— constant time programming— proposed protections simulationand formal verification

4/20 SCRATCHS: Side-Channel Resistant Applications Through Co-designed Hardware/Software |

Project toolchain
• CompCert Abs-Int (minor changes for our annotations)• RISC-V ISA extension• Simulator to evaluate security• WIP : formal proof of the proposed security mechanism

5/20 SCRATCHS: Side-Channel Resistant Applications Through Co-designed Hardware/Software |

Project contributions

CV32E40P

L1-DL1-I

L2

main memory

victim
attacker
context switch

runsecret1

runsecret2
victim

start

secret1

secret2

1○ Timing attacks at
Context Switch

2○ Cache attacks

IF ID EX WB

fetch

c d

decode

RF div

LSU

E

E E

Ensure efficient and on-demandconstant-time execution
• Hardware support for

— software controlled mode for
constant time execution— software controlled cache linesLocked and Unlocked

• Software tools for
— constant time programming— proposed protections simulationand formal verification

6/20 SCRATCHS: Side-Channel Resistant Applications Through Co-designed Hardware/Software |

multi-cycle instructions in CV32E40P
Instruction Type CyclesInteger Computational 1
CSR Access 4 (some CSRs)1 (the other CSRs)
Load/Store 1 access2 accesses (if data is non-aligned)Jump 2
Branch 1 (not-taken)3 (taken)
Multiplication 1 (32-LSBs computation)5 (32-MSBs computation)
Division
Remainder 3-35

7/20 SCRATCHS: Side-Channel Resistant Applications Through Co-designed Hardware/Software |

Software controlled mode for constant time execution

Figure: CV32E40P Block diagram

8/20 SCRATCHS: Side-Channel Resistant Applications Through Co-designed Hardware/Software |

Project contributions

CV32E40P

L1-DL1-I

L2

main memory

victim
attacker
context switch

runsecret1

runsecret2
victim

start

secret1

secret2

1○ Timing attacks at
Context Switch

2○ Cache attacks

IF ID EX WB

fetch

c d

decode

RF div

LSU

E

E E

Ensure efficient and on-demandconstant-time execution
• Hardware support for

— software controlled mode forconstant time execution— software controlled cache lines
Locked and Unlocked

• Software tools for
— constant time programming— proposed protections simulationand formal verification

9/20 SCRATCHS: Side-Channel Resistant Applications Through Co-designed Hardware/Software |

State of the Art – Mitigations of Cache-based SCA

Randomization based caches
• RPcachea, ScatterCacheb and Ceaserc propose cache designs based onrandomization.

 Prime+Prune+Probed find eviction sets in randomized caches from only hundred ac-cesses.
 Randomized caches provide a strong security but it require regular updates of the cachemapping. This can be a source of performance loss.

aWang and Lee, “New Cache Designs for Thwarting Software Cache-Based Side Channel Attacks” , 2007
bWerner et al., “ScatterCache: Thwarting Cache Attacks via Cache Set Randomization” , 2019
cQureshi, “CEASER: Mitigating Conflict-Based Cache Attacks via Encrypted-Address and Remapping” , 2018
dPurnal et al., “Systematic Analysis of Randomization-based Protected Cache Architectures” , 2021

10/20 SCRATCHS: Side-Channel Resistant Applications Through Co-designed Hardware/Software |

State of the Art – Mitigations of Cache-based SCA
Caches partitioning - with the support of the software

• NoMo-cachea partitions the cache by allocating a set of ways to sensitiveapplications.
• SecDCPb (secure and unsecure ways), or COLORISc (memory page allocation) usecoarse-grained partitioning.
• Wang et al. proposes PLcached, a lightweight mechanism allowing the lock ofprocess cache lines.

 Cache partitioning is (generally) a lightweight solution, but may have a major impact onperformance depending on granularity.
aDomnitser et al., “Non-Monopolizable Caches: Low-Complexity Mitigation of Cache Side Channel Attacks” , 2012
bWang et al., “SecDCP: Secure dynamic cache partitioning for efficient timing channel protection” , 2016
cYe et al., “COLORIS: A dynamic cache partitioning system using page coloring” , 2014
dWang and Lee, “New Cache Designs for Thwarting Software Cache-Based Side Channel Attacks” , 2007

11/20 SCRATCHS: Side-Channel Resistant Applications Through Co-designed Hardware/Software |

PLcache limitations
• PLcache1 does not ensure constant-time accesses

— some accesses bypass the cache— Locked cache lines can be accidentally evicted by the owner process— Replacement policy is shared with other processes
• PLcache is not fully secured - it’s provides cache line reservation rather than cacheline locking.

— Replacement policy can be manipulated by an attacker for both non-locked and lockedcache lines
Our approach

 No accidental unlockuse Unlock instructions
 LRU-relaed meta-data is not updated for locked lines.
 At least one free way: Lock fail when only one unlocked way left in the cache set

1Wang and Lee, “New Cache Designs for Thwarting Software Cache-Based Side Channel Attacks” , 2007
12/20 SCRATCHS: Side-Channel Resistant Applications Through Co-designed Hardware/Software |

Lock - handling procedure

LRU way
selection

update LRU
unlocking

update LRU no update
LRU

exception
update LRU

locking

no

yes

no

yes

no

yes

no

yes

no

yes

yes

no

requested
lock ?

way locked ?
lock

permitted ?

hit ?

requested
unlock ?

way locked ?

13/20 SCRATCHS: Side-Channel Resistant Applications Through Co-designed Hardware/Software |

Lock - a pedagogical example

1 lock a1

2 lock a2

3 lw a3

4 lw a1

5 unlock a2

6 lock a4

7 lw a5

8 lw a6

cache set

updated
replacement

policy

4

3

2

1

13/20 SCRATCHS: Side-Channel Resistant Applications Through Co-designed Hardware/Software |

Lock - a pedagogical example

1 lock a1

2 lock a2

3 lw a3

4 lw a1

5 unlock a2

6 lock a4

7 lw a5

8 lw a6

cache set

updated
replacement

policy

a1 µ

4

3

2

 execution of 1⃝

• cache miss
• locking the data

— cannot be evicted— update the policy

13/20 SCRATCHS: Side-Channel Resistant Applications Through Co-designed Hardware/Software |

Lock - a pedagogical example

1 lock a1

2 lock a2

3 lw a3

4 lw a1

5 unlock a2

6 lock a4

7 lw a5

8 lw a6

cache set

updated
replacement

policy

a1

a2

µ

µ

4

3

execution of 2⃝

• cache miss
• locking the data

— cannot be evicted— update the policy

13/20 SCRATCHS: Side-Channel Resistant Applications Through Co-designed Hardware/Software |

Lock - a pedagogical example

1 lock a1

2 lock a2

3 lw a3

4 lw a1

5 unlock a2

6 lock a4

7 lw a5

8 lw a6

cache set

updated
replacement

policy

a1

a2

a3

µ

µ

3

4

execution of 3⃝

• cache miss
• standard access

— update the policy

13/20 SCRATCHS: Side-Channel Resistant Applications Through Co-designed Hardware/Software |

Lock - a pedagogical example

1 lock a1

2 lock a2

3 lw a3

4 lw a1

5 unlock a2

6 lock a4

7 lw a5

8 lw a6

cache set

updated
replacement

policy

a1

a2

a3

µ

µ

3

4

execution of 4⃝

• cache hit
• access to a locked line

— return the data— no update the policy

13/20 SCRATCHS: Side-Channel Resistant Applications Through Co-designed Hardware/Software |

Lock - a pedagogical example

1 lock a1

2 lock a2

3 lw a3

4 lw a1

5 unlock a2

6 lock a4

7 lw a5

8 lw a6

cache set

updated
replacement

policy

a1

a2

a3

µ

2

3

4

execution of 5⃝

• unlocking the data
— update the policy

13/20 SCRATCHS: Side-Channel Resistant Applications Through Co-designed Hardware/Software |

Lock - a pedagogical example

1 lock a1

2 lock a2

3 lw a3

4 lw a1

5 unlock a2

6 lock a4

7 lw a5

8 lw a6

cache set

updated
replacement

policy

a1

a2

a3

a4

µ

µ

3

4

execution of 6⃝

• cache miss
• locking the data

— cannot be evicted— update the policy

13/20 SCRATCHS: Side-Channel Resistant Applications Through Co-designed Hardware/Software |

Lock - a pedagogical example

1 lock a1

2 lock a2

3 lw a3

4 lw a1

5 unlock a2

6 lock a4

7 lw a5

8 lw a6

cache set

updated
replacement

policy

a1

a2

a5

a4

µ

µ

4

3

execution of 7⃝

• cache miss
— evince a3

• standard access
— update the policy

13/20 SCRATCHS: Side-Channel Resistant Applications Through Co-designed Hardware/Software |

Lock - a pedagogical example

1 lock a1

2 lock a2

3 lw a3

4 lw a1

5 unlock a2

6 lock a4

7 lw a5

8 lw a6

cache set

updated
replacement

policy

a1

a6

a5

a4

µ

µ

3

4

execution of 8⃝

• cache miss
— evince a2 (no longerlocked)

• standard access
— update the policy

13/20 SCRATCHS: Side-Channel Resistant Applications Through Co-designed Hardware/Software |

Lock - 4-way set associative cache architecture

tag

11

index

7

bytes
offset
4

memory address

tagV data tagV data

tagV data tagV data

tagV data tagV data

… …

…

…

…

way0 way3

set0

set1

set127

= =

hit0

hit3

{miss;hit}

LRU

selected way

14/20 SCRATCHS: Side-Channel Resistant Applications Through Co-designed Hardware/Software |

LRU with Lock & Unlock - HW implementation

0

1

127

…

LRU metadata BRAM

LRU-Lock logical

LRUupdated
l
12

re

we

LRUmetadata
l
12

index
l
7

lock

unlock

update
l
4

exception

LRU
l
2

15/20 SCRATCHS: Side-Channel Resistant Applications Through Co-designed Hardware/Software |

FPGA Post-synthesis area results 2

Preliminary results
Core: CV32E40P (RISC-V based)

Cache: 8 KiB, 4-way set-associative, L1 data cache

W/o Lock W/ LockLUTs FFs BRAMs LUTs FFs BRAMs
CPU 5653 3484 8.5 5682 (+0.51%) 3500 (+0.46%) 8.5CV32E40P core 4655 2260 0 4657 (+0.44%) 2262 (+0.09%) 0Cache 988 1057 8.5 1015 (+2.66%) 1069 (+1.12%) 8.5

2Synthesis for Kintex-7 chip using Vivado 2022 tool
16/20 SCRATCHS: Side-Channel Resistant Applications Through Co-designed Hardware/Software |

Security evaluation
• We consider a Prime+Probe 3 attack targeting the AES SBOX

— é Lock mechanism is disabled
00 40 80 c0 F0

setted 1st plaintext byte

0

2

4

6

8

10

12

14

ca
ch

e
lin

e

0.0

0.2

0.4

0.6

0.8

1.0

Figure: Prime+Probe on AES (1st round only, 1stplaintext byte settled, key = 0x00).

00 40 80 c0 F0
setted 1st plaintext byte

0

2

4

6

8

10

12

14

ca
ch

e
lin

e

0.0

0.2

0.4

0.6

0.8

1.0

Figure: Prime+Probe on AES (1st round only, 1stplaintext byte settled, key = 0x42).
3Gullasch, Bangerter, and Krenn, “Cache Games – Bringing Access-Based Cache Attacks on AES to Practice” , 2011

17/20 SCRATCHS: Side-Channel Resistant Applications Through Co-designed Hardware/Software |

Security evaluation

• We consider a Prime+Probe 4 attack targeting the AES SBOX
— Ë Lock mechanism is enable for the entire SBOX

00 40 80 c0 F0
setted 1st plaintext byte

0

2

4

6

8

10

12

14

ca
ch

e
lin

e

0.0

0.2

0.4

0.6

0.8

1.0

Figure: Prime+Probe on AES locking full table (1stround only, 1st plaintext byte settled, key = 0x00).
4Gullasch, Bangerter, and Krenn, “Cache Games – Bringing Access-Based Cache Attacks on AES to Practice” , 2011

18/20 SCRATCHS: Side-Channel Resistant Applications Through Co-designed Hardware/Software |

Security evaluation

• We consider a Prime+Probe 4 attack targeting the AES SBOX
— Ë Lock mechanism is enable for the entire SBOX

00 40 80 c0 F0
setted 1st plaintext byte

0

2

4

6

8

10

12

14

ca
ch

e
lin

e

0.0

0.2

0.4

0.6

0.8

1.0

Figure: Prime+Probe on AES locking full table (1stround only, 1st plaintext byte settled, key = 0x00).

Binairy size (in ko)Unprotected AES 60.6Protected AES 60.9+0.5%

4Gullasch, Bangerter, and Krenn, “Cache Games – Bringing Access-Based Cache Attacks on AES to Practice” , 2011
18/20 SCRATCHS: Side-Channel Resistant Applications Through Co-designed Hardware/Software |

Conclusion & Perspectives

https://project.inria.fr/scratchs/

• RISC-V CV32E40P extension for constant timeexecution and cache-based SCA mitigation
• Hardware implementation on FPGA
• Current limits and future works

— support for multiple cache levels— OS support to catch the error and run a back-upsolution— Study hybrid solutions including cacherandomization

19/20 SCRATCHS: Side-Channel Resistant Applications Through Co-designed Hardware/Software |

SCRATCHS: Side-Channel Resistant Applications ThroughCo-designed Hardware/Software
Many thanks to Jean-Loup Hatchikian-Houdot, Nicolas

Gaudin,Frédéric Besson, Pascal Cotret, Guy Gogniat, Guillaume Hiet,
and Pierre Wilke

Thank you for listening!
Any questions?

20/20 SCRATCHS: Side-Channel Resistant Applications Through Co-designed Hardware/Software |

Bibliography

Domnitser, Leonid et al. “Non-Monopolizable Caches: Low-Complexity Mitigation ofCache Side Channel Attacks”. In: ACM Transactions on Architecture and Code
Optimization (Jan. 2012). doi: 10.1145/2086696.2086714.Gullasch, David, Endre Bangerter, and Stephan Krenn. “Cache Games – BringingAccess-Based Cache Attacks on AES to Practice”. In: 2011 IEEE Symposium on Security
and Privacy. 2011, pp. 490–505. doi: 10.1109/SP.2011.22.Purnal, Antoon et al. “Systematic Analysis of Randomization-based Protected CacheArchitectures”. In: Proc. IEEE Symposium on Security and Privacy (SP). May 2021. doi:
10.1109/SP40001.2021.00011.Qureshi, Moinuddin K. “CEASER: Mitigating Conflict-Based Cache Attacks viaEncrypted-Address and Remapping”. In: Proc. International Symposium on
Microarchitecture (MICRO). 2018. doi: 10.1109/MICRO.2018.00068.

20/20 SCRATCHS: Side-Channel Resistant Applications Through Co-designed Hardware/Software |

https://doi.org/10.1145/2086696.2086714
https://doi.org/10.1109/SP.2011.22
https://doi.org/10.1109/SP40001.2021.00011
https://doi.org/10.1109/MICRO.2018.00068

Bibliography

Wang, Yao et al. “SecDCP: Secure dynamic cache partitioning for efficient timingchannel protection”. In: 53ndDesign Automation Conference (DAC). 2016. doi:
10.1145/2897937.2898086.Wang, Zhenghong and Ruby B. Lee. “New Cache Designs for Thwarting SoftwareCache-Based Side Channel Attacks”. In: Proc. International Symposium on Computer
Architecture (ISCA). 2007. doi: 10.1145/1250662.1250723.Werner, Mario et al. “ScatterCache: Thwarting Cache Attacks via Cache SetRandomization”. In: Proc. 28th USENIX Security Symposium (USENIX Security). 2019.url: https:
//www.usenix.org/conference/usenixsecurity19/presentation/werner.Ye, Ying et al. “COLORIS: A dynamic cache partitioning system using page coloring”. In:
Proc. International Conference on Parallel Architecture and Compilation Techniques
(PACT). 2014. doi: 10.1145/2628071.2628104.

20/20 SCRATCHS: Side-Channel Resistant Applications Through Co-designed Hardware/Software |

https://doi.org/10.1145/2897937.2898086
https://doi.org/10.1145/1250662.1250723
https://www.usenix.org/conference/usenixsecurity19/presentation/werner
https://www.usenix.org/conference/usenixsecurity19/presentation/werner
https://doi.org/10.1145/2628071.2628104

	References

