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Side-Channel Resistant Applications Through Co-designed Hardware/Software

• Aimed attacks : Timing side channel on the microarchitecture
• Ensure efficient and on-demand constant-time execution

— Best convenience between hardware and toolchain contributions
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CV32E40P

L1-DL1-I

L2

main memory

victim
attacker
context switch

runsecret1

runsecret2
victim

start

secret1

secret2

1○ Timing attacks at
Context Switch

2○ Cache attacks

IF ID EX WB

fetch

c d

decode

RF div

LSU

E

E E

An OS schedules  and processes.
Only timing side channels are considered.
The attacker :
• knows the victim  program.
• measures time with cycle accuracy.

— victim execution— its memory accesses {hit;miss}
• can interrupt.
• shares cache memories with victim.
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Ensure efficient and on-demandconstant-time execution
Sources of leakages

Branchingif (condition(secret))
Operation with variable execution timedividend/secret;
Index for Memory accessarray[secret];
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Project contributions
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Ensure efficient and on-demandconstant-time execution
• Hardware support for

— software controlled mode forconstant time execution— software controlled cache linesLocked and Unlocked
• Software tools for

— constant time programming— proposed protections simulationand formal verification
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Project toolchain
• CompCert Abs-Int (minor changes for our annotations)• RISC-V ISA extension• Simulator to evaluate security• WIP : formal proof of the proposed security mechanism
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Ensure efficient and on-demandconstant-time execution
• Hardware support for

— software controlled mode for
constant time execution— software controlled cache linesLocked and Unlocked

• Software tools for
— constant time programming— proposed protections simulationand formal verification
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multi-cycle instructions in CV32E40P
Instruction Type CyclesInteger Computational 1
CSR Access 4 (some CSRs)1 (the other CSRs)
Load/Store 1 access2 accesses (if data is non-aligned)Jump 2
Branch 1 (not-taken)3 (taken)
Multiplication 1 (32-LSBs computation)5 (32-MSBs computation)
Division
Remainder 3-35
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Software controlled mode for constant time execution

Figure: CV32E40P Block diagram
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Project contributions
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Ensure efficient and on-demandconstant-time execution
• Hardware support for

— software controlled mode forconstant time execution— software controlled cache lines
Locked and Unlocked

• Software tools for
— constant time programming— proposed protections simulationand formal verification
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State of the Art – Mitigations of Cache-based SCA

Randomization based caches
• RPcachea, ScatterCacheb and Ceaserc propose cache designs based onrandomization.

 Prime+Prune+Probed find eviction sets in randomized caches from only hundred ac-cesses.
 Randomized caches provide a strong security but it require regular updates of the cachemapping. This can be a source of performance loss.

aWang and Lee, “New Cache Designs for Thwarting Software Cache-Based Side Channel Attacks” , 2007
bWerner et al., “ScatterCache: Thwarting Cache Attacks via Cache Set Randomization” , 2019
cQureshi, “CEASER: Mitigating Conflict-Based Cache Attacks via Encrypted-Address and Remapping” , 2018
dPurnal et al., “Systematic Analysis of Randomization-based Protected Cache Architectures” , 2021
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State of the Art – Mitigations of Cache-based SCA
Caches partitioning - with the support of the software

• NoMo-cachea partitions the cache by allocating a set of ways to sensitiveapplications.
• SecDCPb (secure and unsecure ways), or COLORISc (memory page allocation) usecoarse-grained partitioning.
• Wang et al. proposes PLcached, a lightweight mechanism allowing the lock ofprocess cache lines.

 Cache partitioning is (generally) a lightweight solution, but may have a major impact onperformance depending on granularity.
aDomnitser et al., “Non-Monopolizable Caches: Low-Complexity Mitigation of Cache Side Channel Attacks” , 2012
bWang et al., “SecDCP: Secure dynamic cache partitioning for efficient timing channel protection” , 2016
cYe et al., “COLORIS: A dynamic cache partitioning system using page coloring” , 2014
dWang and Lee, “New Cache Designs for Thwarting Software Cache-Based Side Channel Attacks” , 2007
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PLcache limitations
•  PLcache1 does not ensure constant-time accesses

— some accesses bypass the cache— Locked cache lines can be accidentally evicted by the owner process— Replacement policy is shared with other processes
•  PLcache is not fully secured - it’s provides cache line reservation rather than cacheline locking.

— Replacement policy can be manipulated by an attacker for both non-locked and lockedcache lines
Our approach

 No accidental unlockuse Unlock instructions
 LRU-relaed meta-data is not updated for locked lines.
 At least one free way: Lock fail when only one unlocked way left in the cache set

1Wang and Lee, “New Cache Designs for Thwarting Software Cache-Based Side Channel Attacks” , 2007
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Lock - handling procedure
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Lock - a pedagogical example
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 execution of 1⃝

• cache miss
• locking the data

— cannot be evicted— update the policy
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execution of 2⃝

• cache miss
• locking the data

— cannot be evicted— update the policy
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execution of 3⃝

• cache miss
• standard access

— update the policy
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Lock - a pedagogical example
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execution of 4⃝

• cache hit
• access to a locked line

— return the data— no update the policy
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Lock - a pedagogical example
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• unlocking the data
— update the policy
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execution of 6⃝

• cache miss
• locking the data

— cannot be evicted— update the policy
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execution of 8⃝

• cache miss
— evince a2 (no longerlocked)

• standard access
— update the policy
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Lock - 4-way set associative cache architecture
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LRU with Lock & Unlock - HW implementation
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FPGA Post-synthesis area results 2

Preliminary results
Core: CV32E40P (RISC-V based)

Cache: 8 KiB, 4-way set-associative, L1 data cache

W/o Lock W/ LockLUTs FFs BRAMs LUTs FFs BRAMs
CPU 5653 3484 8.5 5682 (+0.51%) 3500 (+0.46%) 8.5CV32E40P core 4655 2260 0 4657 (+0.44%) 2262 (+0.09%) 0Cache 988 1057 8.5 1015 (+2.66%) 1069 (+1.12%) 8.5

2Synthesis for Kintex-7 chip using Vivado 2022 tool
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Security evaluation
• We consider a Prime+Probe 3 attack targeting the AES SBOX

— é Lock mechanism is disabled
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Figure: Prime+Probe on AES (1st round only, 1stplaintext byte settled, key = 0x00).
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Figure: Prime+Probe on AES (1st round only, 1stplaintext byte settled, key = 0x42).
3Gullasch, Bangerter, and Krenn, “Cache Games – Bringing Access-Based Cache Attacks on AES to Practice” , 2011
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Security evaluation

• We consider a Prime+Probe 4 attack targeting the AES SBOX
— Ë Lock mechanism is enable for the entire SBOX
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Figure: Prime+Probe on AES locking full table (1stround only, 1st plaintext byte settled, key = 0x00).
4Gullasch, Bangerter, and Krenn, “Cache Games – Bringing Access-Based Cache Attacks on AES to Practice” , 2011
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Figure: Prime+Probe on AES locking full table (1stround only, 1st plaintext byte settled, key = 0x00).

Binairy size (in ko)Unprotected AES 60.6Protected AES 60.9+0.5%

4Gullasch, Bangerter, and Krenn, “Cache Games – Bringing Access-Based Cache Attacks on AES to Practice” , 2011
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Conclusion & Perspectives

https://project.inria.fr/scratchs/

• RISC-V CV32E40P extension for constant timeexecution and cache-based SCA mitigation
• Hardware implementation on FPGA
• Current limits and future works

— support for multiple cache levels— OS support to catch the error and run a back-upsolution— Study hybrid solutions including cacherandomization
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SCRATCHS: Side-Channel Resistant Applications ThroughCo-designed Hardware/Software
Many thanks to Jean-Loup Hatchikian-Houdot, Nicolas

Gaudin,Frédéric Besson, Pascal Cotret, Guy Gogniat, Guillaume Hiet,
and Pierre Wilke

Thank you for listening!
Any questions?
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