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Embedded Machine Learning 

(IBM Sequoia) 
103 TMAC(/s) 

~ 10MW 

Powered 
by 

Machine Classification and Learning:  
What we currently think 

Machine Classification and Learning:  
What we want 

< 1W 

Presentation begins 
to build this  
transformation 

10 TMAC(/s) 



Physical Computing  Increased 
Computational Efficiency 

x1000 
Improvement 

10MMAC(/s)/W 10MMAC(/s)/mW 
(1979) (2010) 

CMOS 
Scaling 

Energy  
Efficiency  

Wall 

10MMAC(/s)/mW 

Wearable Devices Require more Efficiency  

Physical 
Computation 

x1000 
Improvement 

Large-Scale Field Programmable  
Analog Arrays (FPAA) 



Why Analog (Physical Based) Processing? 
Digital Hitting Limits of Power Efficiency 

[Marr, et. al, 2012] 

Results created its own DARPA program Battery Energy Density: x10 over 40 years 

Power Efficiency wall 
  (Production Ics)  
    1 MAC in 100pJ  
    (10MMAC/mW )   

Source   
VT Mismatch 
(some I-V as well) 



Why Analog (Physical Based) Processing? 

•  Analog (VMM): ~100 fJ / MAC (10MMAC/µW)  @ yield 

•  Other Analog SP similar: 

Mead Hypothesis (1990): Analog x1000 efficiency improvement 

Freq Decomp / Analog FT 
VMM, GMM 
Classifiers  
Adaptive Filters 



Single-Transistor Learning Synapse 

V dd 
V tun 

V d

V g

[Hasler, et. al, NIPS 1994, BMES 1994, and later papers] 

Si CMOS approach can achieve densities while 
avoiding issues with device integration with Si 

130nm STDP synapse data 

Floating-Gate Circuits: Nonvolilative storage, computation, programmable, adaptable 



If cloud is “free”…. 

If cloud is “drops”,   
      then disaster 

If both  more cost 

SoC FPAA decreases energy 
   and resulting complexity 

FPAA vs. Embedded / Cloud Computation 

Physical Algorithms empowering  
wearable devices 

Energy  
Harvesting: 
10uW / cm2 



Where to use ultra-low energy? 
Sensor node < 100µW 

x1000 energy  
improvement  

utilizes  
context-aware  

physical  
computing  
to enable  
100µW  

end-to-end  
sensor node.  



Command Word < 23µW power 

Physical / Analog / Mixed-Signal Computing Exists 

Measured Results for a phrase from the TIMITdatabase to recognize the word “Dark”  

Knee-Joint Rehab < 15µW 

Analog + Digital 
FPAA 

Applications in 
sensors, acoustics, 
imaging 

On-chip Machine 
 learning shown 
(VMM+WTA) 

Capability over 
multiple IC 
processes 

Analog SP Energy  < 1000x Custom Digital SP 



RASP 3.0: First SoC FPAA IC 



Scilab FPAA Synthesis & Modeling Tool 

•  Encapsulated in Ubuntu 12.04 VM 
•  Library of Components (low to high level) 

•  Measurement transistor channel model  
    of HH neuron 



Tool: Measurement and Simulation (LPF) 

One toolset to design, to enable high level simulation,  
and to compile to hardware 

µP DAC SRAM Switches 

Single or Bus of Wires 1 or many Filters 

MacroModel Simulation (level = 1) 

Bus Size = 4 Bus Size = 1 



FPAA Infrastructure 

Remote FPAA System 

Andriod Tablet FPAAs 

•  FG Programming looks like controlled  
    download to µP device   
    Straightforward to program a device 
    (code in Scilab, Python, Java, ….)     

•  USB powered and controlled  
     interfaces like a digital system 



SoC FPAA Classifiers: VMM + WTA for Speech 



Analog, n-WTA single layer block can be a universal     
          approximator (2 layer NN) 
 [Maass, et. al, 2000, Ramakrishnan, et. al, 2013] 

Compiled VMM+WTA Classifier 
Minsksy 1967: XOR classification 
      requires more than one layer 

NN was silenced for 15 years 
     Could solve in layers 
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Multiple classifiers demonstrated (audio), Training 
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Multiple classifiers demonstrated (audio), Training 



Measured XOR Classifier: Different CABs 

Three different set of devices: Same Result 



Physical FPAA Classifier Floorplan 



Developing FPAA Adaptation 
•  Analog, Digital, and µP 

•  Microphone input to  
      classification 
•  statistics: analog or  
      digital 
•  infrastructure 
      and ADCs 

•  FG Programming  
    uses µP device (Batch) 

•  Analog classifier, ultra- 
     low energy datapath 



Acoustic Classification Training Data 

•  Two minutes 
    sensor  
    recording 
    (simultaneous) 

Dataset measured  
  by Lincoln Laboratories Microphones 



Acoustic Classification  FPAA 
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•  Amplitude vs. 
    frequency 
    for different  
    distances    

•  Somewhat 
    robust  
    frequency 
    features 
    & complex 
    background 
    noise 



Developing FPAA Adaptation 

•  Combined Analog, Digital, and µP Architectural Design 

•  FG Programming uses µP device (Batch) 

•  Analog classifier, ultra-low energy classifier datapath 



More Analog Classifier (VMM+WTA) 

•  Front-End Circuit blocks, “scanning” blocks to enable training 
•  VMM implemented in local-fabric routing 



More Analog Classifier (VMM+WTA) 

•  Error metrics and FG update programming handled through µP 

•  Requires careful scaling of fixed-point arithmatic 



Analog Learning Classifier (VMM+WTA) 

100% classification (so far) 

Detect one acoustic signal 
(1s signal bursts) 

Computing in Memory (FPAA routing) 

100% classification (so far) 

(Reduced Digital Simulation of analog) 



Analog Learning Classifier (VMM+WTA) 

100% classification (so far) 
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Neuromorphic + Analog Computation 
Dendrite Computation 


