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Combien de verres de vin doit on consommer au minimum pour 
détecter la presence de la villageoise parmis les 8 bouteilles incluant
celles de la cave du palais de l’Elysée ?

N=8 Log2(8)=3
Astuce : Grouper les vins entre eux

Réponse : Pour détecter K=1 bouteille parmis N=8 :  
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MOTIVATIONS OF COMPRESSIVE SENSING (I)

• Explosion of digital data volume 

resolution

number

nature

Sensors
Mapping
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MOTIVATIONS OF COMPRESSIVE SENSING (II)

• Data management issues : 
• Data storage issues :
Segate Report “ It’s far easier to generate zettabytes of data than 
to manufacture zettabytes of data capacity. A yawning gap is 
emerging between data production and hard drive and flash 
production”

=> Trends is Use data instantaneously or loose it

• Data communication transmission rate is 
growing lower than the data volume explosion

• Power consumption of wireless data 
transmission becomes the bottleneck in many 
wireless portable medical device
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TOWARD A THE NEW PARADIGM

acoustic

imaging

Electromagnetic

Why go to so much effort to acquire all the data when most of what 
we get will be thrown away ?

• It is useless to try to analyze all the data because At 1.5% 
of the total, target- rich data is a much more manageable 
area of discovery

� (Sources IDC,2014
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PRINCIPLE OF COMPRESS SENSING

• What to do ? Acquire a compress representation with little information 
loss through dimensionality reduction
⇒ shrink storage constraint + huge amount data processing requirement
⇒ No more physical representation of the signal 

• How to do it ? 
• compressive sensing only captures a certain amount information
• Be careful information =! from data
• Measure directly in a compressed form

• How is it possible ? 
• A priori signal modelling :  Sparsity

( real world signals are sparse or very compressible in a suitable basis)
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PRINCIPLE OF COMPRESS SENSING

imaging

Sense & Compress
at the same time

• Standard acquisition :

• Compressive acquisition :

� (Rice university,2006)
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WHAT IS A SPARSE SIGNAL (II) ?

• Ex 2 : Sparsity in frequency domain :

• RF Signal waveform :

• Sparsity basis :

time

���= �

frequency

• Key relationship : � � ���	
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PRINCIPLE OF COMPRESSIVE SENSING ACQUISITION

Acquisition matrix

Measurement 
vector

K sparse input 
vector

×

C
×

• Remarks :
• Sparse Signal  	 is projected thanks to a sensing matrix �

• NB : Since � is not full rank => signal recovery �� from measurement y is not 
possible, without any a-priori/model on signal structure …

=> Sparsity comes into play   

• Principle :
• Acquiring minimal number of measurements M such that M<< N while 

keeping all the information of the incoming signal in dimension N
• When signal is sparse, we can acquire a condensed representation of it 

with no information loss through linear dimension reduction
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FROM BANDPASS SAMPLING TO COMPRESS SENSING

Nyquist sampling

• Any signal :

� (Shannon 1949).

fs>fNYQ�2BW �'(
� ) *+ ) �',

��� fLANDAU 
=	�./�

�
0 fNYQ

fL ffH fmax f

fLANDAU

BW

fmax f
fs 2fs k.fs...

*
=

CS

Band-Pass Sampling

• Band-limited signal :

Compress sampling

• K sparse signal :

� (Vaughan et al. 1991) � (Landau 1967).
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• Compact formulation of acquisition scheme :

INFORMATION RECOVERY

1 � �� � �2		

• Compact Formulation of reconstruction problem :

�� � argmin
9

	 : �		subject to : ∈ ℬ(y) ℬ y � {: ∶ 	 �2: − C �� ) DEwhere

Convex approximation 
using l1 norm

additive noise 
consideration

� � 2	, 	 G � H
� is not square/full rank

⇒ ill-posed problem 
unless sparsity conditions :

Many application involve signal inference and not reconstruction
Detection < classification < estimation < reconstruction

⇒ Main Challenge is : recover signal x from measurements y
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• 1.  Face up to robustness issues
• Limitation of the degradation of the Signal To Noise ratio during acquisition 

• 2.  Deal with measurement quantization 
• 3.  Develop more realistic signal models 
• 4.  Develop practical sensing matrices beyond random

• 4,1-Reduction of number of sensing measurements
• 4,2-Optimization number of sensing nodes (hardware serialization)
• 4,3-Optimization of the use of the sensing power

• 5.  Develop more efficient recovery algorithms 
• 6.  Develop rigorous performance guarantees for practical CS systems 
• 7.  Exploit signals directly in the compressive domain

• Reduction of the complexity of the signal reconstruction or classification 
algorithm to be computational extractable

CHALLENGES IN COMPRESS SENSING
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• Objectives : 
• Downscaling the sampling rate thanks to CS approach may democratize the spectral 

sensing capability of RF receiver (primary/secondary user management)
• Provide new toolbox for RF Link Quality Estimation (cross layer optimization in IoT)
• Interference mitigation for high end radio

SPECTRUM SENSING AND COGNITIVE RADIO

• Definition (FCC) : Cognitive radio is a radio or system that senses its operational 
electromagnetic environment and can dynamically and autonomously adjust its radio 
operating parameters to modify system operation, such as maximize throughput, mitigate 
interference, facilitate interoperability, access secondary markets.” 

� (Hongjian et al. 2013).

ADC

fs=fNYQ

RF BW

Filter

LNA BB filter

LO

ADC

VGA

fs
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• Objectives :
• Boosting  the ADC effective bandwidth by leveraging sparsity assumption of 

incoming signal.
• OR for a given bandwidth leveraging the additional dynamic range of sub-Nyquist 

sampling ADCs to enhance its resolution.
• Tricks : 

• Sampling near signal’s (low) “information rate” rather than its (high) Nyquist rate

ANALOG TO INFORMATION CONVERTER

For a given sampling rate, ADC cannot exceed a certain signal-to-noise-and-
distortion-ratio (SDNR)

� (Murmann 2015).



| 17Adaptive Compressive Sensing for Radio-Frequency Receivers | GDR SoC SiP PELISSIER Michaël | June 2017

• Objectives :  
• Extraction of signal features rather than entire signal recovery
• Signal classification rather than signal reconstruction by means of analog analytics

ANALOG TO INFORMATION & FEATURE CONVERTER

� (Verhelst et al. 2015)

• Principles :
• Reduce  the  dimensionality of  the  signal
• Focus on signal freedom degree or relevant feature (link to machine learning) 



| 18Adaptive Compressive Sensing for Radio-Frequency Receivers | GDR SoC SiP PELISSIER Michaël | June 2017

OUTLINE

Novel adaptive CS acquisition scheme : NUWBS

Review of existing CS architectures for RF

Potential CS applications for RF signal processing 

Preliminary

Fundamentals of Compressive Sensing (CS) acquisition

Summary & Perspectives



| 19Adaptive Compressive Sensing for Radio-Frequency Receivers | GDR SoC SiP PELISSIER Michaël | June 2017

NUS  : NON UNIFORM SAMPLING PRINCIPLE

• randomized non-uniform sampling (RNUS) :
• deploys a sampling sequence that is composed of randomly chosen 

periods from a set of time intervals 
• periodic non-uniform sampling (PNUS) :

• sequence of non-uniform sampling periods that are repeated
• level-triggered non-uniform sampling (LTNUS) 

• Level-triggered non-uniform sampling samples 

SUB CATEGORY :

PRINCIPLE :

• Pick up a subset of  time samples among all possible that may be 
available from a full Nyquist sampling rate
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RANDOM NUS (I) : PRINCIPLE

x(t) 

y[n] ADC

PRBS@Tnyq

NUS

t

x(t) 

x

2 � ��� 	IJ
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RANDOM NUS (II) – IMPLEMENTATION EXAMPLE

non-uniform clock generator
with configurable under-sampling factor

4-bit NUS Flash with 16 comparators

� (Bellasi et al. 2013)
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• Synchronous Multi-rate sampling  
• Fixed rate for each branch, all in phase

• Asynchronous Multi-rate sampling 
• Fixed rate for each branch, non coherent

• Nyquist Folding Receiver :
• Continuous time variable sampling rate

VRS : VARIABLE RATE SAMPLING 

• Multiple branches with variable rate 
• Each branch performs Band-pass sampling

PRINCIPLE :

SUB CATEGORY :
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RM : RANDOM MODULATION

• The random DeModulator (RD)

• The random Modulation Pre-Integrator (RMPI)
• = RD with multiple branches

• Modulated Wide Band convertor (MWC)
• Code sequence is periodic

• Encode the input signal by mixing with 
random code sequence (like spread 
spectrum )

PRINCIPLE :

SUB CATEGORY :

fs

x(t) : ∫[Ts]

pc(t)
+1

-1

+1

-1

+1

-1
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� (Mishali et al. 2011)

MODULATED WIDE BAND CONVERTOR : MWC
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MWC – IMPLEMENTATION EXAMPLE : QAIC

� (Yazicigil et al. 2015)

m-sequence 
generators based on 

an LFSR 
implementation

8 unique gold 
sequences generation
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• The lack of structure within the acquisition scheme 
• � excessive storage memory requirements: random sequences on both ends of 

acquisition and reconstruction (NUS, RMPI)
• � Complex recovery requirement algorithm that are power hungry

• Random projection suffers from fundamental limits :
• On input SNR due to aliasing effect 

=> Might be an issue in RF if sensitivity is required 

• Lack of adaptivity to the signal class or specific signal features
=> there is no specific method to extract specific features

WHAT ARE THE LIMITATIONS OF CURRENT SOLUTION ?

Hardware implementation bottleneck Architecture

The Nyquist-rate is still present :
- Track & hold � high bandwidth
- Random generator � high power consumption

NUS & MRS
RMPI, RD

Number of branches required MRS, MWC

Lack of re-configurability and versatility MWC, MRS  

Sensitivity to timing jitter NUS, MRS
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x(t) 

y[n] ADC

PRBS@Tnyq

NOVEL METHOD : NON UNIFORM WAVELET BANDPASS 
SAMPLING (NUWBS)

d
�(e) y[n] ADC

PRBS@Ts

d 
x(t) 

• NUWBS : Non Uniform Band Wavelet Pass sampling
• Non Uniform Sampling :

1 � KLIJ���	
1 � KLfL���	

structured
acquisition

� “ Non-Uniform Wavelet Sampling for RF Analog-to-Information Conversion”, M Pelissier & C Studer 
IEEE Transactions on Circuits and Systems I: Regular Papers, accepted for publication 12/2016
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• Ability to tune the time-frequency window in a manner to track dynamic variation of 
the signal statistical parameters

• The reconfigurable structure of the transform introduce adaptability and versatility 
into the system. Depending on the needs or the features to be extracted we can adapt 
the wavelet accordingly (detection abrupt discontinuities, central frequency, etc.)

• Ability to arrange the time-frequency tiling in a manner that minimizes the disturbances 
By flexible design of the time-frequency windows, the effect of noise and interference on 
the signal can be minimized 

• Wavelets are a priori well suited to the adaptive scheme since it has an inherent tree 
structure, coming from recursive decomposition (DWT, WPT, QMF, …) cf. JPEG200

• Hardware complexity is manageable for both from acquisition chain (for instance pulse 
generation) but also algorithm (Morlet WT processing time of O(N) is the minimal 
theoretically possible of all signal-processing methods )

WHY SHOULD WE USE WAVELET FRAMES ?

Wavelet may provide a “sustainable and green solution for cognitive radio” � (Nikookar 2013)
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NUWBS : PRINCIPLE

d
�(e) y[n] ADC

PRBS@Ts

d 
x(t) 

• NUWBS : Non Uniform Wavelet Band Pass sampling

x(t) 

y[n] ADC

PRBS@Tnyq

• NUS : Non Uniform Sampling

x(t)

x

x(t)

x

y[n]
ADC

PRBS@Ts

pc(t)

t
Ts

∫[Ts]

• Nyquist rate accuracy requirement
• High bandwidth requirement
• Sampling with 1 freedom degree

• Sub-Nyquist accuracy requirement
• Low (BB) bandwidth requirement
• Sampling with 3 degrees of 

freedom � versatile 

tTNYQ

(a)
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NUWBS : BENEFITS 

d
�(e) y[n] ADC

PRBS@Ts

d 
x(t) 

Features Benefits
Wavelet ‘smear out’ the samples : instead of measuring 
x(t), we modulate the signal around time δ with a pulse 
wave p(t) translated at frequency fc and integrate 

Bandwidth reduction of sampling      
hardware (track/hold, ADC )

The pulse duration and central frequency is adjusted 
according needs 

Possibility to match the acquisition 
to the signal of interest
(disturbance resilience)

The results of the integration is down sampled in time Reduce number of measurements

f11

fmax=fnyq /20

Δf

f12

f13
f21

f23

X(f)

f01 f02

noise

f11

f12

f13
f21

f23

f01 f02

f11

f12

f13
f21

f23

Signal Matching Compressive 

- Prior on signal required
- ‘windowing effect’
- Disturbance mitigation

- No prior
- ‘compression effect
- Noise aliasing
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• Summary of CS Main features :
• Compressive sensing is an enabler technology to cope with big data processing 

assuming sparse representation of the information
• RF signal processing can leverage CS approach in various domain : sensing, 

beamforming, block/chain performance booster

• Summary of CS acquisition for RF signal processing :
• Sub-Nyquist sampling rate for RF sparse signal processing has been demonstrated 

with both off the shelf and ASICs proof of concept.
• Most of periodic solution relies on “encoded bandpass sampling” solution that 

creates diversity of the alias so as to recover information 

• The Non Uniform Wavelet Band Pass sampling (NUWBS) features : 
• Dedicated solution to deal with frequency sparse RF multiband signal
• Solution matched to the band of interest => optimal noise/interference resilience
• Solution offers sampling scheme with 3 freedom degrees => flexibility

SUMMARY
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• improve the RSNR and overcome structural limitation of CS with respect SNR 
performances by considering additional structure into the signal.

• Provide dynamic acquisition process to handle sparsity fluctuation in time 

• Activate  the  subset of features most beneficial under specific operating 
conditions in analog  feature converter => Toward adaptive scheme

• Overcome hardware limitation due to fixed amount of parallelization and 
branches.

• Target real-time decision and relax signal inference constraints from signal 
reconstruction to signal classification by processing data directly in compressive 
domain.

TRENDS AND HOT TOPICS
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